Part Number Hot Search : 
40128 AD204JN 36N5I 0G226 CUPPB 4M4VAC RF6505 0G226
Product Description
Full Text Search
 

To Download STR735FZX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STR73xF
ARM7TDMITM 32-bit MCU with Flash, 3x CAN, 4 UARTs, 20 timers, ADC, 12 comm. interfaces
Core - ARM7TDMI 32-bit RISC CPU - 32 MIPS @ 36 MHz Temperature range -40 to 105 C Memories - Up to 256 Kbytes FLASH program memory (10,000 cycles endurance, data retention 20 years at 55C) - 16 Kbytes RAM Clock, reset and supply management - 4.5 - 5.5V application supply and I/Os - Embedded 1.8V regulator for core supply - Embedded oscillator running from external 4-8MHz crystal or ceramic resonator - Up to 36 MHz CPU freq. with internal PLL - Internal RC oscillator 32kHz or 2MHz software configurable for fast startup and backup clock - Realtime Clock for clock-calendar function - Wakeup Timer driven by internal RC for wakeup from STOP mode - 5 power saving modes: SLOW, WFI, LPWFI, STOP and HALT modes Nested interrupt controller - Fast interrupt handling with multiple vectors - 64 maskable IRQs with 64 vectors and 16 priority levels - 2 maskable FIQ sources - 16 ext. interrupts, up to 32 wake-up lines

TQFP100 14 x 14 TQFP144 20 x 20 LFBGA144 10 x 10 x 1.7

- 72/112 multifunctional bidirectional I/Os DMA - 4 DMA controllers with 4 channels each Timers - 16-bit watchdog timer (WDG) - 6/10 16-bit timers (TIM) each with: 2 input captures, 2 output compares, PWM and pulse counter modes - 6 16-bit PWM modules (PWM) - 3 16-bit timebase timers with 8-bit prescalers 12 communications interfaces - 2 I2C interfaces - 4 UART asynchronous serial interfaces - 3 BSPI synchronous serial interfaces - Up to 3 CAN interfaces (2.0B Active) 10-bit A/D converter - 12/16 channels - Conversion time: min 3s, range: 0 to 5V Development tools support - JTAG interface
STR731FVx 64K 128K 256K 16K 6 TIM Timers, 72 I/Os, 18 Wake-Up lines, 12 ADC channels 3 4.5 to 5.5V -40 to +105C 0 64K STR736FVx 128K 256K

Up to 112 I/O ports Table 1. Device summary
Features FLASH memory - bytes RAM - bytes Peripheral Functions CAN Peripherals Operating Voltage Operating Temperature Packages T=TQFP144 20 x 20 H=LFBGA144 10 x10 STR730FZx 128K 256K 16K 10 TIM Timers, 112 I/Os, 32 Wake-Up lines, 16 ADC channels 3 0 STR735FZX 128K 256K
T=TQFP100 14x14
March 2006
Rev 3
1/40
www.st.com 40
Contents
STR73xF
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 1.2 1.3 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 1.4.2 1.4.3 STR730F/STR735F (TQFP144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 STR730F/STR735F (LFBGA144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 STR731F/STR736F (TQFP100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5
Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Voltage regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Preliminary power consumption data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 RSTIN input filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Flash electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 5
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 Low Power Wait For Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6
2/40
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STR73xF
Introduction
1
Introduction
This datasheet provides the STR73x Ordering Information, Mechanical and Electrical Device Characteristics. For complete information on the STR73xF Microcontroller memory, registers and peripherals. please refer to the STR73x Reference Manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference Manual.
1.1
Overview
ARM core with embedded Flash & RAM STR73xF family combines the high performance ARM7TDMITM CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage FLASH memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software. Extensive tools support STMicroelectronics' 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST's ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available. For more information, please refer to ST MCU site http://www.st.com/mcu Figure 1 shows the general block diagram of the device family. Package Choice: Reduced Pin-Count TQFP100 or Feature-Rich 144-pin TQFP or LFBGA The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package. The family includes versions with and without CAN.
3/40
Introduction High Speed Flash Memory
STR73xF
The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz. The STR7 embedded Flash memory can be programmed using In-Circuit Programming or In-Application programming. The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years at 55C. IAP (In-Application Programming): The IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. ICP (In-Circuit Programming): The ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board. The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection:

Sector Write Protection Flash Debug Protection (locks JTAG access)
Flexible Power Management To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application. Flexible Clock Control Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. Voltage Regulators The STR73xF requires an external 4.5 to 5.5V power supply. There are two internal Voltage Regulators for generating the 1.8V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode. Low Voltage Detectors The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF. Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly.
4/40
STR73xF
Introduction
1.2
On-Chip Peripherals
CAN Interfaces The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736. DMA 4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity. 16-bit Timers (TIM) Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph). PWM Modules (PWM) The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor. Timebase Timers (TB) The three 16-bit Timebase Timers with 8-bit prescaler for general purpose time triggering operations. Realtime Clock (RTC) The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator. UARTs The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625K baud. Buffered Serial Peripheral Interfaces (BSPI) Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up 6 Mb/s (@36 MHz System Clock). I2C Interfaces The two I2C Interfaces provide multi-master and slave functions, support normal and fast I2C mode (400 kHz) and 7 or 10-bit addressing modes. A/D Converter The 10-bit Analog to Digital Converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3us.
5/40
Introduction Watchdog
STR73xF
The 16-bit Watchdog Timer protects the application against hardware or software failures and ensures recovery by generating a reset. I/O Ports Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or Alternate Function. External Interrupts and Wake-Up Lines 16 external interrupts lines are available for application use. In addition, up to 32 external Wakeup lines (18 in 100-pin devices) can be used as general purpose interrupts or to wakeup the application from STOP mode.
6/40
STR73xF
Block Diagram
2
Block Diagram
Figure 1.
RSTIN
STR730F/STR735F block diagram
PRCCU/PLL
ARM7TDMI CPU
ARM7 NATIVE BUS
FLASH Program Memory 64/128/256K RAM 16K APB BRIDGE 0 APB BRIDGE 1
M0 M1 TEST
JTDI JTCK JTMS JTRST JTDO V18 VDD VSS VDDA VSSA
JTAG
POWER SUPPLY VREG AHB BRIDGE
AHB BUS
DMA0-3 CLOCK MGT (CMU) XTAL1 XTAL2 OSC RTC WATCHDOG I2C0-1 WAKEUP/INT (WIU) UART0, 1, 2, 3
APB BUS APB BUS
4 AF 32 AF 8 AF
INTERRUPT CTL (EIC) 16 AF 12 AF 12 AF 6 AF 6 AF 122 ports A/D CONVERTER (ADC) TIMER (TIM) 2-4 BSPI 0-2 CAN 0-2* PWM 0-5 GPIO PORTS 0-6
TIMEBASE TIMER (TB) 0-2 WAKEUP TIMER (WUT) TIMER (TIM) 0-1 TIMER (TIM) 5-9 8 AF 20 AF
*CAN peripherals not available on STR735F.
AF: alternate function on I/O port pin
7/40
Block Diagram Figure 2.
RSTIN
STR73xF STR731F/STR736 block diagram
PRCCU/PLL
ARM7TDMI CPU
ARM7 NATIVE BUS
FLASH Program Memory 64/128/256K RAM 16K APB BRIDGE 0 APB BRIDGE 1
M0 M1 TEST
JTDI JTCK JTMS JTRST JTDO V18 VDD VSS VDDA VSSA
JTAG
POWER SUPPLY VREG AHB BRIDGE
AHB BUS
DMA0-3 CLOCK MGT (CMU) XTAL1 XTAL2 OSC RTC WATCHDOG I2C0-1 WAKEUP/INT (WIU) UART0, 1, 2, 3
APB BUS APB BUS
4 AF 18 AF 8 AF
INTERRUPT CTL (EIC) 12 AF 12 AF 12 AF 6 AF 6 AF 72 ports A/D CONVERTER (ADC) TIMER (TIM) 2-4 BSPI 0-2 CAN 0-2* PWM 0-5 GPIO PORTS 0-6
TIMEBASE TIMER (TB) 0-2 WAKEUP TIMER (WUT) TIMER (TIM) 0-1 TIMER (TIM) 5 8 AF 4 AF
*CAN peripherals not available on STR736F.
AF: alternate function on I/O port pin
8/40
STR73xF
Block Diagram
2.1
Related Documentation
Available from www.arm.com: ARM7TDMI Technical Reference Manual Available from http://www.st.com: STR73x Reference Manual STR7 Flash Programming Reference Manual STR73x Software Library User Manual For a list of related application notes refer to http://www.st.com.
9/40
Block Diagram
STR73xF
2.2
2.2.1
Pin description
STR730F/STR735F (TQFP144)
Figure 3. STR730F/STR735F pin configuration (top view)
P6.15 / WUP9 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.10 / WUP8 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.7 / WUP7 P6.6 / WUP6 P6.5 / WUP5 P6.4 / TDO3 / WUP4 P6.3 / WUP3 P6.2 / RDI3 / WUP2 P6.1 / WUP1 P6.0 / WUP0 VDD VSS V18 P5.15 / INT13 P5.14 / INT12 P5.13 / INT11 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / INT7 P5.8 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 P5.3 / OCMPB9 P5.2 / OCMPA9 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73
OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 VSS VDD OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 ICAPB5 / P0.7 OCMPA6 / P0.8 OCMPB6 / P0.9 OCMPA7 / P0.10 OCMPB7 / P0.11 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 VSS VDD P1.4 P1.5 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13
STR730F/STR735F
P4.14 / SS1 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.8 / OCMPA8 P4.7 / SDA1 P4.6 / SCL1 / WUP19 P4.5 / CAN2RX / WUP18 P4.4 / CAN2TX P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.11 / AIN11 P3.10 / AIN10 P3.9 / AIN9 P3.8 / AIN8 VDDA VSSA P3.7 / AIN7 P3.6 / AIN6
Note 1: CAN alternate functions not available on STR735F.
10/40
WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 PWM3 / P2.5 PWM4 / P2.6 PWM5 / P2.7 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS TDO1 / P2.8 WUP14 / RDI1 / P2.9 WUP16 / P2.10 WUP17 / P2.11 INT14 / P2.12 INT15 / P2.13 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.0 AIN1 / P3.1 AIN2 / P3.2 AIN3 / P3.3 AIN4 / P3.4 AIN5 / P3.5
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
STR73xF
Block Diagram
2.2.2
Table 2.
Ball
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12
STR730F/STR735F (LFBGA144)
STR730F/STR735F LFBGA ball connections
Name
P0.0 / OCMPB2 P6.10 / WUP8 P6.9 / TDO0 P6.12 / MOSI0 P6.6 / WUP6 V18 P5.15 / INT13 P5.8 / INT6 P5.2 / OCMPA9 P5.7 / MISO2 P5.6 / MOSI2 P5.11 / TDO2 / INT9 P0.8 / OCMPA6 P0.9 / OCMPB6 P0.10 / OCMPA7 P0.11 / OCMPB7 P0.12 / ICAPA3 P6.5 / WUP5 P6.0 / WUP0 P5.13 / INT11 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.6 / SCL1 / WUP19 P4.5 / WUP18 / CAN2RX 1) P1.4 P1.11 / ICAPA0 / WUP29 P1.12 / ICAPA1 / WUP30 P2.7 / PWM5 VDD P2.9 / RDI1 / WUP14
Ball
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B12 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12
Name
P0.4 / OCMPA5 P0.1 / OCMPA2 P6.15 / WUP9 P6.13 / SCKO / WUP11 P6.7 / WUP7 P6.2 / WUP2 / RDI3 P5.14 / INT12 P5.9 / INT7 P5.3 / OCMPB9 P5.0 / MOSI1 P4.8 / OCMPA8 VDD P0.13 / ICAPB3 P0.14 / OCMPB3 P0.15 / OCMPA3 P1.0 / OCMPA4 P1.1 / OCMPB4 P6.1 / WUP1 P4.4 / CAN2TX1) P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 JTDI P1.6 / OCMPB1 P1.13 / ICAPB1 / WUP31 P2.1 / CAN1RX1) / WUP13 P2.6 / PWM4 M1 P2.8 / TDO1 P2.13 / INT15 P3.0 / AIN0 P3.4 / AIN4 VDDA VSSA P3.11 / AIN11
Ball
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Name
P0.5 / OCMPB5 P0.2 / ICAPA2 P0.3 / ICAPB2 P6.14 / SSO P6.8 / RDI0 / WUP10 P6.3 / WUP3 VSS P5.10 / INT8 / RDI2 P5.4 / SS2 P5.1 / MISO1 P4.14 / SS1 P4.7 / SDA1 VSS P1.2 / ICAPB4 P1.3 / ICAPA4 VSS P1.5 P2.11 / WUP17 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK nJTRST P1.7 / OCMPA1 P1.15 / CAN0TX1) P2.0 / PWM0 P2.3 / PWM1 RSTIN VSS P2.12 / INT14 VBIAS P3.3 / AIN3 P3.5 / AIN5 P3.7 / AIN7 P3.10 / AIN10
Ball
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Name
VSS VDD P0.6 / ICAPA5 P0.7 /ICAPB5 P6.11 / MISO0 P6.4 / WUP4 /TDO3 VDD P5.12 / INT10 P5.5 / SCK2 / WUP23 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 VDD P1.8 / OCMPA0 / INT0 P1.9 / OCMPB0 / INT1 P1.10 / ICAPB0 / WUP28 XTAL2 P2.10 / WUP16 P2.15 / SDA 0 JTMS VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P1.14 / CAN0RX 1) / WUP12 P2.4 / PWM2 P2.5 / PWM3 P2.2 / CAN1TX1) M0 VSS XTAL1 TST P3.2 / AIN2 VSS VDD P3.6 / AIN6
B11 P4.15 / SCK1 / WUP22 C11
P2.14 / SCL 0 / WUP15 P3.1 / AIN1 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.9 / AIN9 P3.8 / AIN8
Note 1: CAN alternate functions not available on STR735F.
11/40
Block Diagram
STR73xF
2.2.3
STR731F/STR736F (TQFP100)
Figure 4. STR731F/STR736F pin configuration (top view)
P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.6 / WUP6 P6.4 / TDO3 / WUP4 P6.2 / RDI3 / WUP2 P6.0 / WUP0 VDD VSS V18 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / PWM5 / INT7 P5.8 / PWM4 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 /PWM3 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
STR731F/STR736F
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P4.14 / SS1 P4.10 / ICAPB5 / WUP20 P4.7 / SDA1 P4.6 / SCL1 / WUP19 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN11 / INT5 P3.14 / AIN10 / INT4 P3.13 / AIN9 / INT3 P3.12 / AIN8 / INT2 P3.11 / AIN7 P3.10 / AIN6 P3.9 / AIN5 P3.8 / AIN4 VDDA VSSA P3.7 / AIN3 P3.6 / AIN2
Note 1: CAN alternate functions not available on STR736F.
12/40
WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS CAN2RX / TDO1 / P2.8 WUP14 / CAN2TX / RDI1 / P2.9 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.4 AIN1 / P3.5
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
STR73xF Legend / Abbreviations for Table 3: Type: In/Output level: I = input, O = output, S = supply, HiZ= high impedance,
Block Diagram
TT= TTL 0.8V / 2V with input trigger CT= CMOS 0.3VDD/0.7VDD with input trigger Port and control configuration: Input: pu/pd = with internal 100k weak pull-up or pull down OD = open drain (logic level) PP = push-pull
Output: Interrupts:
INTx =external interrupt line WUPx =Wake-Up interrupt line The reset state of the I/O ports is input floating. To avoid excess power consumption, unused I/O ports must be tied to ground. Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset)
OD
Alternate function
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A1 B2 C2 C3 D1 D2 B1 C1 D3 D4 E1 E2 E3 E4 F1 G1 E5
1 2 3 4
P0.0/OCMPB2 P0.1/OCMPA2 P0.2/ICAPA2 P0.3/ICAPB2 VSS VDD
I/O I/O I/O I/O S S I/O I/O I/O I/O I/O I/O
TT TT TT TT
2mA X X Port 0.0 TIM2: Output Compare B output 2mA X X Port 0.1 TIM2: Output Compare A output 2mA X X Port 0.2 TIM2: Input Capture A input 2mA X X Port 0.3 TIM2: Input Capture B input Ground Supply voltage (5V)
5 6 7
P0.4/OCMPA5 P0.5/OCMPB5 P0.6/ICAPA5 P0.7/ICAPB5 P0.8/OCMPA6 P0.9/OCMPB6
TT TT TT TT TT TT TT TT
2mA X X Port 0.4 TIM5: Output Compare A output 2mA X X Port 0.5 TIM5: Output Compare B output 2mA X X Port 0.6 TIM5: Input Capture A input 2mA X X Port 0.7 TIM5: Input Capture B input 2mA X X Port 0.8 TIM6: Output Compare A output 2mA X X Port 0.9 TIM6: Output Compare B output 2mA X X 2mA X X Port 0.10 Port 0.11 TIM7: Output Compare A output TIM7: Output Compare B output
P0.10/OCMPA7 I/O P0.11/OCMPB 7 8 9 VDD VSS I/O S S I/O
PP
Supply voltage (5V) Ground TT 2mA X X Port 0.12 TIM3: Input Capture A input
10 P0.12/ICAPA3
13/40
Block Diagram Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
STR73xF
STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset) Port 0.13 Port 0.14 Port 0.15
OD
Alternate function
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
F2 F3 F4 F5 F6 G2 G3 G4 H1 J1 G5 K1 L1 H2 H3 H4 J2 J3 K2 M1 L2 L3 K3 M4 L4 M2
11 P0.13/ICAPB3 12 P0.14/OCMPB 3
I/O I/O
TT TT TT TT TT TT TT
2mA X X 2mA X X 2mA X X
PP
TIM3: Input Capture B input TIM3: Output Compare B output TIM3: Output Compare A output
13 P0.15/OCMPA3 I/O 14 P1.0/OCMPA4 15 P1.1/OCMPB4 16 P1.2/ICAPB4 17 P1.3/ICAPA4 VSS VDD P1.4 P1.5 18 P1.6/OCMPB1 19 P1.7/OCMPA1 20 P1.8/OCMPA0 21 P1.9/OCMPB0 22 P1.10/ICAPB0 23 P1.11/ICAPA0 24 P1.12/ICAPA1 25 P1.13/ICAPB1 I/O I/O I/O I/O S S I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
2mA X X Port 1.0 TIM4: Output Compare A output 2mA X X Port 1.1 TIM4: Output Compare B output 2mA X X Port 1.2 TIM4: Input Capture B input 2mA X X Port 1.3 TIM4: Input Capture A input Ground Supply voltage (5V)
TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT INT0 INT1
2mA X X Port 1.4 2mA X X Port 1.5 2mA X X Port 1.6 TIM1: Output Compare B output 2mA X X Port 1.7 TIM1: Output Compare A output 2mA X X Port 1.8 TIM0: Output Compare A output 2mA X X Port 1.9 TIM0: Output Compare B output Port 1.10 Port 1.11 Port 1.12 Port 1.13 Port 1.14 Port 1.15 TIM0: Input Capture B input TIM0: Input Capture A input TIM1: Input Capture A input TIM1: Input Capture B input CAN0: Receive Data input CAN0: Transmit Data output
WUP28 2mA X X WUP29 2mA X X WUP30 2mA X X WUP31 2mA X X WUP12 2mA X X 2mA X X
26 P1.14/CAN0RX I/O 27 P1.15/CAN0TX I/O 28 P2.0/PWM0 29 P2.1/CAN1RX 30 P2.2/CAN1TX 31 P2.3/PWM1 32 P2.4/PWM2 I/O I/O I/O I/O I/O
2mA X X Port 2.0 PWM0: PWM output WUP13 2mA X X Port 2.1 CAN1: Receive Data input 2mA X X Port 2.2 CAN1: Transmit Data output 2mA X X Port 2.3 PWM1: PWM output 2mA X X Port 2.4 PWM2: PWM output
14/40
STR73xF Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
Block Diagram STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset)
OD
Alternate function
44 45 46 47 48 49 50 51 52 53 54
M3 K4 J4 M5 L5 K5 J5 M6 M7 H5 L6
P2.5/PWM3 P2.6/PWM4 P2.7/PWM5 33 M0 34 RSTIN 35 M1 36 VDD 37 VSS 38 XTAL1 39 XTAL2 40 VSS P2.8/TDO1/CA 41 N2RX
I/O I/O I/O I I I S S I O S
TT TT TT TT CT TT pd pu pd
2mA X X Port 2.5 PWM3: PWM output 2mA X X Port 2.6 PWM4: PWM output 2mA X X Port 2.7 PWM5: PWM output BOOT: Mode selection 0 input Reset input BOOT: Mode selection 1 input Supply voltage (5V) Ground Oscillator amplifier circuit input and internal clock generator input. Oscillator amplifier circuit output. Ground UART1: 2mA X X Port 2.8 Transmit Data output CAN2: Receive Data input (TQFP100 only) CAN2: Transmit Data output (TQFP100 only)
55
K6
I/O
TT
56
J6
42
P2.9/RDI1/CAN I/O 2TX
TT
UART1: WUP14 2mA X X Port 2.9 Receive Data input Port 2.10 Port 2.11 Port 2.12 Port 2.13 Port 2.14 Port 2.15 I2C0:Serial Clock I2C0:Serial Data
57 58 59 60 61 62 63
H6 G6 L7 K7 J7 H7 M8
P2.10 P2.11 P2.12 P2.13 43 P2.14/SCL0 44 P2.15/SDA0 45 Test
I/O I/O I/O I/O I/O I/O I
TT TT TT TT TT TT pd
WUP16 2mA X X WUP17 2mA X X INT14 INT15 2mA X X 2mA X X
WUP15 2mA X X 2mA X X
PP
Reserved pin. Must be tied to ground
15/40
Block Diagram Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
STR73xF
STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset)
OD
Alternate function
PP
64
L8
46 VBIAS
S
Internal RC Oscillator bias. A 1.3M external resistor has to be connected to this pin when a 32kHZ RC oscillator frequency is used. Ground Supply voltage (5V) TT TT TT TT TT TT TT TT 2mA X X Port 3.0 ADC: Analog input 0 2mA X X Port 3.1 ADC: Analog input 1 2mA X X Port 3.2 ADC: Analog input 2 2mA X X Port 3.3 ADC: Analog input 3 2mA X X Port 3.4 2mA X X Port 3.5 2mA X X Port 3.6 2mA X X Port 3.7 ADC: Analog input 4 (AIN0 in TQFP100) ADC: Analog input 5 (AIN1 in TQFP100) ADC: Analog input 6 (AIN2 in TQFP100) ADC: Analog input 7 (AIN3 in TQFP100)
65 M10 47 VSS 66 M11 48 VDD 67 68 69 70 71 72 K8 J8 M9 L9 K9 P3.0/AIN0 P3.1/AIN1 P3.2/AIN2 P3.3/AIN3 49 P3.4/AIN4
S S I/O I/O I/O I/O I/O I/O I/O I/O S S I/O I/O I/O I/O I/O I/O I/O I/O S TT TT TT TT TT TT TT TT INT2 INT3 INT4 INT5
L10 50 P3.5/AIN5
73 M12 51 P3.6/AIN6 74 75 76 77 78 79 80 81 82 83 84 85 L11 52 P3.7/AIN7 K11 53 VSSA K10 54 VDDA J12 J11 55 P3.8/AIN8 56 P3.9/AIN9
Reference ground for A/D converter Reference voltage for A/D converter 2mA X X Port 3.8 2mA X X Port 3.9 2mA X X 2mA X X 2mA X X 2mA X X 2mA X X 2mA X X Port 3.10 Port 3.11 Port 3.12 Port 3.13 Port 3.14 Port 3.15 ADC: Analog input 8 (AIN4 in TQFP100) ADC: Analog input 9 (AIN5 in TQFP100) ADC: Analog input 10 (AIN6 in TQFP100) ADC: Analog input 11 (AIN7 in TQFP100) ADC: Analog input 12 (AIN8 in TQFP100) ADC: Analog input 13 (AIN9 in TQFP100) ADC: Analog input 14 (AIN10 in TQFP100) ADC: Analog input 15 (AIN11 in TQFP100)
L12 57 P3.10/AIN10 K12 58 P3.11/AIN11 J10 J9 59 P3.12/AIN12 60 P3.13/AIN13
H12 61 P3.14/AIN14 H11 62 P3.15/AIN15 H10 63 VDD
Supply voltage (5V)
16/40
STR73xF Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
Block Diagram STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset) Ground TT TT TT TT pu pu pu pd 4mA JTAG Reset Input JTAG Data input JTAG Mode Selection Input JTAG Clock Input JTAG data output. Note: Reset state = HiZ Ground Supply voltage (5V) TT TT TT TT TT TT TT TT TT TT WUP24 2mA X X Port 4.0 TIM7: Input Capture A input WUP25 2mA X X Port 4.1 TIM7: Input Capture B input WUP26 2mA X X Port 4.2 TIM8: Input Capture A input WUP27 2mA X X Port 4.3 TIM8: Input Capture B input 2mA X X Port 4.4 CAN2: Transmit Data output WUP18 2mA X X Port 4.5 CAN2: Receive Data input WUP19 2mA X X Port 4.6 I2C1:Serial Clock 2mA X X Port 4.7 I2C1:Serial Data 2mA X X Port 4.8 TIM8: Output Compare A output 2mA X X Port 4.9 TIM6: Input Capture B input TIM5: Input TIM6: Input Capture B Capture A input input (144-pin pkg (TQFP100 only) only) TIM8: Output Compare B output TIM9: Input Capture A input TIM9: Input Capture B input BSPI1: Slave Select BSPI1: Serial Clock
OD
Alternate function
86 87 88 89 90 91 92 93 94 95 96 97 98 99
H9
64 VSS
S I I I I O S S I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
G12 65 JTRST F12 66 JTDI H8 67 JTMS
G11 68 JTCK G10 69 JTDO G9 G8 G7 F11 F10 F9 F8 E12 70 VSS 71 VDD P4.0/ICAPA7 P4.1/ICAPB7 P4.2/ICAPA8 P4.3/ICAPB8 P4.4/CAN2TX P4.5/CAN2RX
100 E11 72 P4.6/SCL1 101 C12 73 P4.7/SDA1 102 B12 103 E10 P4.8/OCMPA8 P4.9/ICAPB6
104
E9
74
P4.10/ICAPA6/I I/O CAPB5
PP
TT
WUP20 2mA X X
Port 4.10
105 D12 106 D11 107 D10
P4.11/OCMPB 8 P4.12/ICAPA9 P4.13/ICAPB9
I/O I/O I/O I/O I/O
TT TT TT TT TT
2mA X X WUP21 2mA X X 2mA X X 2mA X X WUP22 2mA X X
Port 4.11 Port 4.12 Port 4.13 Port 4.14 Port 4.15
108 C11 75 P4.14/SS1 109 B11 76 P4.15/SCK1
17/40
Block Diagram Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
STR73xF
STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset)
OD
Alternate function
PP
110 B10 77 P5.0/MOSI1 111 C10 78 P5.1/MISO1 112 113 A9 B9 P5.2/OCMPA9 P5.3/OCMPB9
I/O I/O I/O I/O
TT TT TT TT
2mA X X Port 5.0 2mA X X Port 5.1
BSPI1: Master Output/Slave input BSPI1: Master input/Slave output
2mA X X Port 5.2 TIM9: Output Compare A output 2mA X X Port 5.3 TIM9: Output Compare B output BSPI2: Slave 2mA X X Port 5.4 Select PWM3: PWM output (TQFP100 only)
114
C9
P5.4/SS2/PWM I/O 79 3 80 P5.5/SCK2 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O S S S I/O I/O
TT
115
D9
TT TT TT TT TT TT TT TT TT TT TT
WUP23 2mA X X Port 5.5 BSPI2: Serial Clock 2mA X X Port 5.6 2mA X X Port 5.7 INT6 INT7 INT8 INT9 INT10 INT11 INT12 INT13 2mA X X Port 5.8 2mA X X Port 5.9 2mA X X 2mA X X 2mA X X 2mA X X 2mA X X 2mA X X Port 5.10 Port 5.11 Port 5.12 Port 5.13 Port 5.14 Port 5.15 Supply voltage for core provided by internal voltage regulator Ground Supply voltage (5V) BSPI2: Master Output/Slave input BSPI2: Master input/Slave output PWM4: PWM output (TQFP100 only) PWM5: PWM output (TQFP100 only) UART2: Receive Data input UART2: Transmit Data output
116 A11 81 P5.6/MOSI2 117 A10 82 P5.7/MISO2 118 119 120 A8 B8 C8 83 P5.8/PWM4 84 P5.9/PWM5 85 P5.10/RDI2
121 A12 86 P5.11/TDO2 122 123 124 125 126 127 128 129 130 D8 E8 B7 A7 A6 C7 D7 E7 F7 87 P5.12 P5.13 P5.14 P5.15 88 V18 89 VSS 90 VDD 91 P6.0 P6.1
TT TT
WUP0 WUP1
8mA X X Port 6.0 2mA X X Port 6.1
18/40
STR73xF Table 3.
Pin n LFBGA144 Input Level TQFP144 TQFP100 Type Pin Name
Block Diagram STR73xF pin description
Input interrupt pu/pd Output Capability Main functio n (after reset)
OD
Alternate function
131 132 133 134 135 136 137 138 139 140 141 142 143 144
B6 C6 D6 E6 A5 B5 C5 A3 A2 D5 A4 B4 C4 B3
92 P6.2/RDI3 P6.3 93 P6.4/TDO3 P6.5 94 P6.6 P6.7 95 P6.8/RDI0 96 P6.9/TDO0 P6.10 97 P6.11/MISO0 98 P6.12/MOSI0 99 P6.13/SCK0 10 P6.14/SS0 0 P6.15
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
TT TT TT TT TT TT TT TT TT TT TT TT TT TT
WUP2 WUP3 WUP4 WUP5 WUP6 WUP7
2mA X X Port 6.2 UART3: Receive Data input 2mA X X Port 6.3 2mA X X Port 6.4 UART3: Transmit Data output 2mA X X Port 6.5 2mA X X Port 6.6 2mA X X Port 6.7
WUP10 2mA X X Port 6.8 UART0: Receive Data input 2mA X X Port 6.9 UART0: Transmit Data output WUP8 2mA X X 2mA X X 2mA X X WUP11 2mA X X 2mA X X WUP9 2mA X X Port 6.10 Port 6.11 Port 6.12 Port 6.13 Port 6.14 Port 6.15 BSPI0: Master input/Slave output BSPI0: Master Output/Slave input BSPI0: Serial Clock BSPI0: Slave Select
PP
19/40
Block Diagram
STR73xF
2.3
Memory Mapping
Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature Most reserved memory spaces (gray shaded areas in Figure 5) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter "prefetch abort" state (Exception vector 0x0000_000C) or "data abort" state (Exception vector 0x0000_0010). It is up to the application software to manage these abort exceptions. Figure 5.
0xFFFF FFFF 0xFFFF 8000
Memory map
APB Memory Space 32 Kbytes
0xFFFF FFFF 0xFFFF FC00 0xFFFF FBFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF F800 F7FF F600 F400 F3FF
Addressable Memory Space 4 Gbytes
APB TO ARM7 BRIDGE
32K
EIC ADC CMU RTC DMA 0-3 TIM 4
1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K
7
0xE000 0000 0xDFFF FFFF
FLASH Memory Space 64K/128/256 Kbytes
0x8010 DFFF
0xFFFF F000 0xFFFF EFFF 0xFFFF EC00 0xFFFF EBFF
6
0xC000 0000 0xBFFF FFFF
0x8010 C000 0x8010 0017 0x8010 0000
System Memory 8K Flash registers
TIM 3
0xFFFF E800 0xFFFF E7FF
20B
TIM 2
0xFFFF E400 0xFFFF E3FF 0xFFFF E000 0xFFFF DFFF 0xFFFF DC00 0xFFFF DBFF
BSPI 2 BSPI 1 BSPI 0 GP I/O 0-6 PWM 0-5 CAN 2(4) CAN 1
(4)
5
0xA000 3FFF 0xA000 0000 0x9FFF FFFF RAM
0xFFFF D800 0xFFFF D7FF 0xFFFF D400 0xFFFF D3FF
16K
0xFFFF D000 0xFFFF CFFF 0xFFFF CC00 0xFFFF CBFF
4
0x8010 0017 0x8000 0000 0x7FFF FFFF FLASH
0xFFFF C800 0xFFFF C7FF 0xFFFF C400 0xFFFF C3FF
CAN 0(4) APB BRIDGE 1 REGS reserved WAKEUP reserved TIM 5-9 TIM 1 TIM 0 WAKEUPTIM WDG UART 3 UART 1 UART 2 UART 0 TB 0-2
64K/128K/256K
0xFFFF C000 0xFFFF BFFF 0xFFFF BC00 0xFFFF BBFF
3
0x6000 03FF 0x6000 0000 0x5FFF FFFF PRCCU
0xFFFF B800 0xFFFF B7FF 0xFFFF B400 0xFFFF B3FF
1K
0x8003 FFFF
0xFFFF B000 0xFFFF AFFF
B0F7(2)
64K
0xFFFF AC00 0xFFFF ABFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF A800 A7FF A600 A400 A3FF A200 A000 9FFF 9E00 9C00 9BFF
2
0x4000 003F 0x4000 0000 0x3FFF FFFF CONFIG. REGS
0x8003 0000 0x8002 FFFF
64B
0x8002 0000 0x8001 FFFF
B0F6(2)
64K
1
0x2000 000F 0x2000 0000 0x1FFF FFFF NATIVE ARBITER
B0F5(3)
64K
0xFFFF 9800 0xFFFF 97FF 0xFFFF 9400 0xFFFF 93FF
reserved reserved reserved I2C 1 I2C 0
16B
0x8001 0000 0x8000 FFFF
0xFFFF 9000 0xFFFF 8FFF
B0F4
0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 8000 7FFF 6000 5FFF 4000 3FFF 2000 1FFF 0000
32K 8K 8K 8K 8K
0xFFFF 8C00 0xFFFF 8BFF 0xFFFF 8800 0xFFFF 87FF 0xFFFF 8400 0xFFFF 83FF 0xFFFF 8000
0
0x0010 0017 0x0000 0000 FLASH (1)
B0F3 B0F2 B0F1 B0TF
64K/128K/256K
APB BRIDGE 0 REGS
(1) FLASH aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes) (2) Only available in STR73xZ2/V2 (3) Only available in STR73xZ2/V2 and STR73xZ1/V1 (4) Only available in STR730/STR731
access to gray shaded area will return an ABORT Drawing not to scale
20/40
STR73xF
Electrical characteristics
3
Electrical characteristics
This product contains devices to protect the inputs against damage due to high static voltages, however it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages. For proper operation it is recommended that VIN be higher than VSS and lower than VDD. Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (VDD or VSS).
Caution:
All values indicated in this section are preliminary and to be confirmed by product characterization.
3.1
Absolute maximum ratings
Stresses exceeding the recommended "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN>VDD or VINSymbol VDD VSSA VDDA VIN IINJ TST ESD
Absolute Maximum Ratings
Parameter Voltage on VDD pins with respect to ground (VSS) Voltage on VSSA pin with respect to ground (VSS) Voltage on VDDA pin with respect to ground (VSS) Voltage on any pin with respect to ground (VSS) Input current on any pin during overload condition Absolute sum of all input currents during overload condition Storage temperature ESD Susceptibility (Human Body Model) Value -0.3 to +6.0 VSS -0.3 to VDD + 0.3 -0.3 to VDD + 0.3 101) 75 -55 to +150 2000 Unit V V V V mA mA C V
1. In 144-pin devices, only +10mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed).
21/40
Electrical characteristics
STR73xF
3.2
Recommended operating conditions
Table 5.
Symbol Operating Conditions Value Parameter Min VDD VSSA VDDA TA TJ Operating Supply Voltage with respect to ground (VSS) Voltage on VSSA pin with respect to ground (VSS) Operating Analog Reference Voltage with respect to ground (VSS) Ambient temperature under bias Junction temperature under bias 4.5 VSS 4.5 -40 -40 Max 5.5 VSS VDD + 0.1 +105 +125 V V V C C Unit
Note:
RAM data retention is not guaranteed when VDD is below 3.5 Volt.
3.3
Voltage regulator characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 6.
Symbol
Voltage Regulator Characteristics
Parameter Main Regulator Output Voltage External decoupling capacitor to be connected between V18 pin and nearest VSS pin. Conditions Min Value Unit Typ 1.8 Max
VOUT
CV18
100
nF
22/40
STR73xF
Electrical characteristics
3.4
Preliminary power consumption data
Table 7 to Table 8 give expected typical values based on bench measurements on a small number of parts. Table 7. STR73xF consumption in Run mode at 25C and 85C
Conditions Code executing in RAM fMCLK (MHz) fADC (MHz) Typical IDD (mA) 10 10 20 36 10 Code executing in Flash 10 20 36 9 32 48 9 29 42 22 VDD= 5.5V, RC Oscillator off, PLL on, RTC enabled, 1 Timer (TIM) running, and ADC running in scan mode. 20
Table 8.
Mode RUN
STR73xF consumption in Run and low power modes at 25C
Conditions All peripherals on 24MHz 56mA 33mA 31mA 11mA 8mA 3mA 2.5mA 528A 378A 83A 64A 44A 44A Main Voltage Regulator on, Flash on, EIC on, WIU on, GPIOs on. PLL off, Main Voltage Regulator on CLOCK2/16, Main Voltage Regulator on, 36MHz 24MHz 4MHz 250kHz 250kHz 29kHz 250kHz fMCLK 36MHz Typical IDD 76mA
WFI
SLOW
CLOCK2/16, Main Voltage Regulator off, RC oscillator running in Low Frequency, Main Quartz oscillator off, Main Voltage Regulator off
LPWFI
CLOCK2/16, Main Voltage Regulator off, LP Voltage Regulator = 2mA, Flash in power down mode.. Main Voltage Regulator off, RTC on, RC oscillator off Main Voltage Regulator off, RTC off, RC oscillator off, LP Voltage Regulator = 6mA
STOP
Main Voltage Regulator off, RTC off, RC oscillator off, LP Voltage Regulator = 4mA Main Voltage Regulator off, RTC off, RC oscillator off, LP Voltage Regulator = 2mA
HALT
RTC off, LP Voltage Regulator = 2mA
23/40
Electrical characteristics
STR73xF
3.5
DC electrical characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified.
Table 9. DC electrical characteristics Value Symbol Parameter Input High Level TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) Input High Level TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS Input High Level CMOS Schmitt Trigger RSTIN Input Low Level TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) Input Low Level TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS Input Low Level CMOS Schmitt Trigger RSTIN Conditions Min Typ Max Unit
2.0
-
VDD+0.3
V
VIH
2.0
-
VDD+0.3
V
0.7VDD
-
VDD+0.3
V
-0.3
-
0.8
V
VIL
-0.3
-
0.8
V
-0.3
-
0.3VDD
V
24/40
STR73xF
Table 9. DC electrical characteristics
Electrical characteristics
Value Symbol Parameter Input Hysteresis TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) Input Hysteresis TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS Output Low Level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin:P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Conditions Min Typ Max Unit
450
-
-
mV
VHYS
450
-
-
mV
Input Hysteresis CMOS Schmitt Trigger RSTIN
800
-
-
mV
VOH1)
Output high level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0)
Push Pull, IOH = 2mA VDD - 0.8
-
-
V
Output high level standard 144-pin: P6(0) Push Pull, IOH = 8mA VDD - 0.8 100-pin: P3(14) Output high level (JTAG) JTDO Push Pull, IOH = 4mA VDD - 0.8
-
-
V
-
-
V
25/40
Electrical characteristics
Table 9. DC electrical characteristics Value Symbol Parameter Output Low Level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Output low level standard 144-pin: P6(0) 100-pin: P3(14) Output low level (JTAG) JTDO Output transition time standard (10%-90% and 90%-10%) 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Output transition time standard (10%-90% and 90%-10%) 144-pin: P6(0) 100-pin: P3(14) Output transition time (10%-90% and 90%-10%) JTDO RWPU RWPD Weak Pull-Up Resistor Weak Pull-Down Resistor Conditions Min Typ
STR73xF
Unit Max
Push Pull, IOL = 2mA
-
-
0.4
V
VOL
Push Pull, IOL = 8mA
-
-
0.4
V
Push Pull, IOL = 4mA
-
-
0.4
V
CL = 20pF CL = 50pF
3 6
5 10
10 20
ns
ttr
CL = 50pF CL = 100pF
1 3
3 5
7 10
ns
CL = 20pF CL = 50pF
2 3 80 80
3 6 120 120
7 12 200 200
ns k k
26/40
STR73xF
Table 9. DC electrical characteristics
Electrical characteristics
Value Symbol Parameter Input Leakage Current Standard M0, M1, JTDI, JTCK, JTRST, JTMS, RSTIN 144-pin: P0(15:0), P1(15:0), P2(15:0), P4(15:0), P5(15:0), P6(15:0) 100-pin: P0(15:0), P1(15:0), P2(15:14), P2(1:0), P3(15:0), P4(7:0) Input Leakage Current Analog Input
1.
Conditions Min Typ Max
Unit
-
-
1
A
Ilkg
-
-
1
A
This specification is not valid for outputs which are switched to open drain mode. In this case, the respective output will float and the voltage is imposed by external circuitry.
3.6
RSTIN input filter characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 10.
Symbol tFRST tNFRST tSTART
RSTIN input filter characteristics
Value Parameter RSTIN Input Filtered Pulse RSTIN Input Not Filtered Pulse RSTIN removal after Power-up Conditions Min 2000 100 Typ Max 50 ns ns s Unit
27/40
Electrical characteristics
STR73xF
3.7
Main oscillator electrical characteristics
The STR73xF can operate with a crystal oscillator or resonator clock source. Figure 6 describes a simple model of the internal oscillator driver as well as example of connection for a crystal oscillator or a resonator. Figure 6. Crystal oscillator and resonator
DEVICE
VDD
I
R
XTAL1
XTAL2
DEVICE
XTAL1 XTAL2 XTAL1
DEVICE
XTAL2 Resonator
Crystal
RS CL CL
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified.
28/40
STR73xF Table 11.
Symbol fOSC gm VOSC VAV
Electrical characteristics Main oscillator electrical characteristics
Value Parameter Oscillator frequency Oscillator Transconductance Oscillation amplitude Oscillator operating point fOSC = 4 MHz, TA= 25oC fOSC = 8 MHz, TA= 25oC Sine wave middle, TA= 25oC External crystal, VDD = 5.5V, fOSC = 4 MHz, TA=-40oC External crystal, VDD = 5.0V, fOSC = 4 MHz, TA=25oC Oscillator Start-up Time External crystal, VDD = 5.5V, fOSC = 6 MHz, TA=-40oC External crystal, VDD = 5.0V, fOSC = 6 MHz, TA=25oC External crystal, VDD = 5.5V, fOSC = 8 MHz, TA=-40oC External crystal, VDD = 5.0V, fOSC = 8 MHz, TA= 25oC Conditions Min 4 1.5 2.3 2.3 1.5 0.85 5.5 3.3 2.7 12 8 7 V
Unit Typ Max 8 4.2 V MHz mA/V
ms ms ms ms ms ms
tSTUP
29/40
Electrical characteristics Table 11.
Symbol
STR73xF
Main oscillator electrical characteristics
Value Parameter Conditions Min C1(2) = C2 (3)= 10pF fOSC = 4 MHz Cp(1) = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF fOSC = 5 MHz Cp = 10pF C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF Module of oscillator Negative Resistance 150 490 490 380 160 415 340 260 160 325 250 180 160 260 185 135 155 210 145 100 Typ 555 1035 1030 850 470 800 735 580 415 640 550 420 375 525 420 315 340 435 335 245 Max Unit
R-ESR
fOSC = 6 MHz Cp = 10pF
C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF
fOSC = 7 MHz Cp = 10pF
C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF C1 = C2 = 10pF
fOSC = 8MHz Cp = 10pF
C1 = C2 = 20pF C1 = C2 = 30pF C1 = C2 = 40pF
1. CP represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track. 2. C1 represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance). 3. C2 represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance):
30/40
STR73xF
Electrical characteristics
3.8
PLL electrical characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified.
Table 12.
Symbol
PLL Electrical Characteristics
Value Parameter Conditions Min Typ Max 3.0 5.0 20 x fPLLIN 12 x fPLLIN 28 x fPLLIN 16 x fPLLIN fPLLOUT/DX 120 240 240 480 300 1000 500 10 36 MHz FREF_RANGE = `0' FREF_RANGE = `1' MX = "00" MX = "01" MX = "10" MX = "11" DX = 1..7 FREF_RANGE = `0', MX0 = '1' FREF_RANGE = `0', MX0 = '0' FREF_RANGE = `1', MX0 = '1' FREF_RANGE = `1', MX0 = '0' stable oscillator (fPLLIN = 4 MHz), stable VDD fPLLIN = 4 MHz (pulse generator) fPLLIN = 4 MHz (resonator) fPLLIN = 4 MHz (pulse generator) 1.5 3.0 Unit
fPLLIN(1)
PLL reference clock
fPLLOUT
PLL output clock
MHz
fMCLK
System clock PLL free running frequency
MHz
fFREE
kHz
tLOCK tPKJIT tLTJIT
PLL lock time
s
PLL jitter (pk to pk)
ps
PLL Long term jitter
ns
1. fPLLIN is obtained from fOSC directly or through an optional divider by 2.
3.9
RC oscillator electrical characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 13.
Symbol
RC oscillator electrical characteristics
Value Parameter RC High Frequency Conditions Min Typ 2.34 29 TA = CMU_RCCTL=0x8 25oC, 90 10 Max MHz kHz A A Unit
fRC
RC Low Frequency RC High Frequency Current
IDD(RC)
RC Low Frequency Current
31/40
Electrical characteristics
STR73xF
3.10
Table 14.
Flash electrical characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Flash electrical characteristics
Value Typ Max Unit TA = 25 C TA = 105 C 0k1 cycles 0k1 cycles 10k cycles
Symbol
Parameter
Conditions
tWP tDWP tBP64 tBP128 tBP256
Word Program (32-bit) Double Word Program (64bit) Bank 0 Program (64K) (Double Word Program) Bank 0 Program (128K) (Double Word Program) Bank 0 Program (256K) (Double Word Program) Not preprogrammed
35 60 0.5 1 2 0.6 0.5 1.1 0.8 1.7 1.3
80 150 1.25 2.5 4.9 0.9 0.8 2.0 1.8 3.7 3.3 20 10 30
120 190 1.5 3.1 6.2 1.3
s s s s s
tSE8
Sector Erase (8K)
Preprogrammed (all bits programmed to 0) not preprogrammed
s 1.1 3.0 s 2.3 5.3 s 3.8 20 10 30 20 170 s s s ms s
tSE32
Sector Erase (32K)
Preprogrammed (all bits programmed to 0) Not preprogrammed
tSE64
Sector Erase (64K)
Preprogrammed (all bits programmed to 0)
tRPD tPSL tESL tESRR tSP
Recovery from PowerDown Program Suspend Latency Erase Suspend Latency Erase Suspend Request Rate Set Protection Min delay between 2 requests 20 40
20 170
1. 0k cycle data applies to new parts, not yet cycled by the customer but after approx. 100 test cycles during manufacture.
32/40
STR73xF
Electrical characteristics
3.11
ADC electrical characteristics
VDD = 5V 10%, TA = -40 / +105C, unless otherwise specified. Table 15.
Symbol
ADC electrical characteristics
Value Parameter Analog Reference Ground Analog Reference Voltage Analog Input voltage Conditions Min Typ Max VSS VDD+0.1 VDDA 10 ADC Input Capacitance Sample time Conversion time Internal resistance of analog source Current injection on one ADC input, different from the converted one No current injection Not sampling Sampling 10 MHz fADC 10 MHz fADC 1 3 1 3 6 V V V MHz pF s s
k
Unit
VSSA VDDA VAINX(2) fADC CAIN tS(3) tC(4) RASRC
VSS 4.5(1) VSSA
IINJ
Input current Injection
-10
10
mA
-2 -7
+2 +7
LSB LSB
|ET|
Total Unadjusted Error
Current injection on adjacent channel
1. VDDA can be tied to ground when A/D converter is not in use: however extra consumption (around 200 uA) on main VDD will occur due to internal analog circuitry not being completely turned off: so, it is recommended to keep VDDA at VDD level even when not in use. 2. VAINx may exceed VSSA and VDDA limits, remaining within absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. 3. During the sample time the input capacitance CAIN can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes to the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. 4. This parameter includes the sample time tS, the time for determining the digital result and the time for loading the result register with the conversion result.
33/40
Package characteristics
STR73xF
4
4.1
Package characteristics
Package mechanical data
Figure 7. 100-pin thin quad flat package
D D1 A A2
Dim. A
mm Min 0.05 1.35 0.17 0.09 16.00 14.00 16.00 14.00 0.50 0 0.45 3.5 0.60 1.00 100 7 0 1.40 0.22 Typ Max 1.60 0.15 0.002 Min
inches Typ Max 0.063 0.006
A1
A1 A2 b
1.45 0.053 0.055 0.057 0.27 0.007 0.009 0.011 0.20 0.004 0.630 0.551 0.630 0.551 0.020 3.5 0.039 7 0.75 0.018 0.024 0.030 0.008
b
C D
e E1 E
D1 E E1 e L
c
L1 L h
L1 N
Number of Pins
Figure 8.
144-pin thin quad flat package
Dim.
D D1 D3 A1 108 109 73 72 0.10mm .004 in. b Seating Plane E A A2
mm Min 0.05 1.35 0.17 0.09 1.40 0.22 Typ Max 1.60 0.15 0.002 1.45 0.053 0.27 0.007 0.20 0.004 Min
inches Typ Max 0.063 0.006 0.057 0.011 0.008
A A1 A2 b c D D1 D3 E E1
c
b E3 E1
21.80 22.00 22.20 0.858 0.867 0.874 19.80 20.00 20.20 0.780 0.787 0.795 17.50 0.699 21.80 22.00 22.20 0.858 0.867 0.874 19.80 20.00 20.20 0.780 0.787 0.795 17.50 0.50 0 0.45 3.5 0.60 1.00 144 7 0 0.699 0.020 3.5 0.039 7 0.75 0.018 0.024 0.030
144 1 e
37 36
E3 e K
L1
L h
L L1 N
Number of Pins
34/40
STR73xF Figure 9.
Package characteristics 144-ball low profile fine pitch ball grid array package
mm Min 1.21 0.21 1.12 0.35 0.40 8.80 8.80 0.80 0.60 0.10 0.15 0.08 Number of Pins N 144 Typ Max Min 0.008 0.044 0.45 0.014 0.016 0.018 0.346 0.346 0.031 0.024 0.004 0.006 0.003 1.70 0.048 inches Typ Max 0.067
Dim. A A1 A2 b D D1 E E1 e F ddd eee fff
9.85 10.00 10.15 0.388 0.394 0.400 9.85 10.00 10.15 0.388 0.394 0.400
35/40
Package characteristics
STR73xF
4.1.1
Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x JA) Where: - - - - - TA is the Ambient Temperature in C, JA is the Package Junction-to-Ambient Thermal Resistance, in C/W, PD is the sum of PINT and PI/O (PD = PINT + PI/O), PINT is the product of IDD and VDD, expressed in Watt. This is the Chip Internal Power, PI/O represents the Power Dissipation on Input and Output Pins; User Determined. (1)
Most of the time for the applications PI/O < PINT and may be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273C) Therefore (solving equations 1 and 2): K = PD x (TA + 273C) + JA x PD2 Where: - K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA Thermal Characteristics
Description Package LFBGA144 JA Thermal Resistance Junction-Ambient TQFP144 TQFP100 Value (typical) TBD 40 55 C/W Unit
(2)
(3)
Table 16.
Symbol
36/40
STR73xF
Order codes
5
Table 17.
Order codes
Order Codes
FLASH Kbytes 128 256 128 256 128 256 128 256 64 128 256 6 12 0 18 72 64 128 256 TQFP100 14x14 TQFP100 14x14 3 Package TQFP144 20x20 3 LFBGA144 10x10 10 16 32 112 TQFP144 20x20 0 LFBGA144 10x10 16 1 -40 to +105C TIM 6x PWM CAN A/D Wake-up I/O RAM Lines Ports Kbytes Timers Module Periph Chan. Temp. Range
Partnumber STR730FZ1T7 STR730FZ2T7 STR730FZ1H7 STR730FZ2H7 STR735FZ1T7 STR735FZ2T7 STR735FZ1H7 STR735FZ2H7 STR731FV0T7 STR731FV1T7 STR731FV2T7 STR736FV0T7 STR736FV1T7 STR736FV2T7
37/40
Known limitations
STR73xF
6
6.1
Known limitations
Low Power Wait For Interrupt mode
When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into Low Power mode or Power Down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is `0', Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry. Workaround There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter Power Down mode (bit PWD = `1').
38/40
STR73xF
Revision history
7
Revision history
Table 18.
Date 19-Sep-2005 2-Nov-2005
Revision history
Revision 1 2 First release Removed Table 8 power consumption in LP modes Updated PLL frequency in Section 1.1 and Table 12 Section 3.4: Preliminary power consumption data updated Section 3.5: DC electrical characteristics updated Section 6: Known limitations added. Description of Changes
8-Mar-2006
3
39/40
STR73xF
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
40/40


▲Up To Search▲   

 
Price & Availability of STR735FZX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X